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Abstract

This study deals with the propagation of the leading, high-frequency edge of the shock wave
emanating from an impact point on an armored vehicle, specifically, in an experiment on an
M113 armored personnel carrier subjected to explosive charges.

The amplitude of the transverse wave can be well fit by a semiempirical equation, which
accounts for both longitudinal and transverse waves, exponential decrease with distance, mixing
of waves at edges, and amplification at points near edges. Comparison of wave speeds with
published data confirms the roles of longitudinal and transverse disturbances.
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I. Introduction

When a significant amount of energy is deposited onto a small area (or into a
small volume) of a structure, a physical phenomenon known as ballistic shock
may occur. In this phenomenon, a portion of the deposited energy is transmit-
ted away from the immediate region of deposition through the violent vibration
of the structure. In the case of armored vehicles and other structures made of
resilient materials, this energy may be transmitted (dispersed) throughout the
structure including areas far removed from and not exposed to the incident
agent. Thus, if transmitted to vibration-sensitive components, a system may
undergo failure via damage that occurs far removed from the point of impact.

Note that this phenomenon can occur whether or not the incident agent
(e.g., a kinetic energy penetrator or shaped charge jet) perforates the struc-
ture.

For the balance of this discussion, we shall assume that the target is an armored
vehicle which is struck on its integral, metallic hull.

Target response to ballistic shock is conveniently divided, by vibrational modes
(and associated frequencies), into two markedly different physical domains.
The lower frequency domain — up to approximately 1 kHz — is dominated by
large-scale flexural vibrations, which include by far the majority of the en-
ergy imparted by the incident agent. This is distinguished from the higher
domain (above 1 kHz) by relatively larger deflections but relatively lower ac-
celerations. As vibrational frequencies increase above 1 kHz, the dominant
mechanism for the propagation of vibrational energy changes from flexural vi-
bration of the system as a whole to stress waves in the material itself. It is
not surprising, therefore, that the two domains manifest significantly different
damage mechanisms. Energy in the lower frequency domain tends to produce
structural damage, such as the failure of plates and edge joints (welds). In
the higher frequency domain, the energy tends to produce damage of light,
intricate, frequency-sensitive components such as electronics and optics.

This report deals exclusively with the measurement and analysis of ballistic
shock in the higher frequency domain (above 1 kHz).

A salient characteristic was observed by Petty! in experiments involving high-
frequency ballistic shock. In measurements taken with accelerometers (see
below), it was observed that the initial, transient, high-frequency pulse of

1Petty, D. Private communication. U.S. Army Research Laboratory, Aberdeen Proving
Ground, MD, 1997




energy that first reaches any given point inevitably included the highest of
the high-frequency amplitudes. That is, in actual ballistic shock events, the
leading (transient) pulse is always the strongest — and hence, presumably, the
most damaging. Thus, it appears justified to confine the analysis of the higher
frequency domain to this “leading edge”. This simplification is important for
two reasons. First, measurements of vibrations in the high-frequency domain
are eventually overwhelmed by the large amplitude, low-frequency motions of

- the target. However, these low-frequency motions become apparent only after

several milliseconds, by which time the high-frequency leading edge has passed
and been recorded.

In addition, the ability to concentrate on the passage of the leading edge re-
sults in a significantly simplified analysis. Rather than tracking all vibrations
throughout a vehicle until all energy has been dissipated, it is reasonable to

. model the spread of high-frequency energy as a single wavefront that prop-

agates outward from the source. (First-order corrections at boundaries are
discussed in Section III.) This allows formulation of a linear model in which
the propagation of energy from point to point is characterized by “transfer
functions”. Such a model is amenable to incorporation into the production-
grade computer codes that are used for routine vulnerability analyses and the
generation of large amounts of vulnerability data.

This report presents data, data analysis, and attempts at deriving a semi-
empirical model of the high-frequency ballistic shock phenomenon. In this
limited study, only one set of experiments on one relatively simple vehicle
(M113 armored personnel carrier) is presented. Other data taken by Petty and
others remain to be fully analyzed. It is also recognized that newer vehicles,
with composite and/or double hulls, will introduce further complications into
this treatment. Application of the findings of this study to such cases is
discussed in Section IV.




II. Experimental Procedure and Results

In the experiment analyzed herein, an M113 armored personnel carrier (a ve-
hicle with monolithic aluminum exterior walls and top) was instrumented as
shown in Figures 1 and 2. Gauges consisted of single directional (perpendicular
to mounting surface) accelerometers, made and calibrated by PCB Piezotron-
ics, Inc. Advertised operating range was 0.1-20 kHz, with a rise time of 5 ps.
All gauges were screwed into holes that had been drilled and tapped directly
into the aluminum hull of the test vehicle. Outputs were digitally recorded.

In these experiments, the input shock was produced by detonating a bare
charge of pentolite that was fixed to a 30.5-cm X 30.5-cm x 2.54-cm (12-in
X 12-in x 1-in) aluminum plate (the “charge plate”) mounted on the vehicle
where shown in Figure 2. In all cases, the charge weight was 56.7 g (1/8th
Ib). Gauge distances from charge-center and number of intervening edges vs.
gauge numbers are given in Table 1.

Table 1: Gauge Distances and Intervening Edges.

Gauge Distance (in.) Intervening
No. from Charge Edges

48

48

25

27
50.5
75.1
99.6
123.1
125.1
150.1
161
161
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—
—
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The experimental series consisted of eight data shots herein referred to by their
range sequence numbers, as given in Table 2. '




Table 2: Shot Numbers of Data Included in This Analysis.
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Figure 1: Gauge Positions on M113, Top View.
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The output of each gauge, scaled by its calibration, is presented in Appendix
A. A typical plot, that of Gauge #6 in shot #709, is presented in Figure 3.
The following characteristics are noted:

a. First, two ultrahigh frequency “spikes” riding on the initial quiescent
signal.

b. After another quiescent period, a series of low-amplitude “ripples”.

c. Then, a mass of high amplitude oscillations — in this case, at about 3
kHz.

d. Degradation into a more noisy appearing, lower amplitude signal.

e. Although not apparent in Figure 3, there is also the beginning of a longer
time period baseline shift incorporated in the noisy tail of the plot.
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ITI. Analysis

A. Extraction of Metrics.

1. Pulse Shape Analysis.

Analysis of the calibrated data traces resulted in the following conclusions.
(Italicized terms are defined for use in subsequent discussions. )

First, the leading ultrahigh frequency spikes are caused by the trigger pulse, the
electrical signal that initiated the detonation of the shock-producing charge.
Since this pulse is simultaneously recorded on the output of every detector, this
ultrahigh frequency spike can serve as a zero-time marker on every detector
record.

Following detonation, there is a quiescent period at the detector sites dur-
ing which the ballistic shock is forming and propagating outward from the
shock point. The subsequent low-amplitude ripples indicate the arrival of a
longitudinal vibration spreading out from the shock point through the vehicle
hull. The speed of a longitudinal vibration is higher than that of a transverse
one, explaining its early arrival. However, since the detectors were designed
to respond to transverse vibrations, the amplitude of detector response to
the longitudinal vibration is low. We refer to this set of early, low-amplitude
ripples as the precursor pulse.

This is followed by the arrival of and detector response to the transverse vibra-
tion, herein referred to as the main pulse. As reported by Petty, the response
is most severe within the first few milliseconds: within ten ms, the amplitude
has decreased significantly, with only isolated subsequent cycles reaching 20%
of the highest peaks. This lower amplitude “noise” continues throughout the
remainder of the measurement period.

Longer term data traces exhibit marked low-frequency rises and falls of the
baseline on which this noise rides; these low-frequency oscillations are the
response of the vehicle as a whole to the low-frequency portion of the shock.

Using this analysis of the characteristics of each detector output, it was possible
to define and extract metrics that characterize the data of interest for this
study.



2. Arrival Time Analysis.

First, in order to verify the above analysis, it was illustrative to extract from
each data record the times between the trigger pulse, the arrival of the first
low-amplitude oscillation, and the arrival of the first high amplitude oscilla-
tion. To do this, a computer program was written that distinguished signals
above appropriate thresholds, sensed frequency by the number of consecutive
readings above threshold, and counted data points in the intervals. From this
two sets of timing data were extracted: trigger-pulse-to-arrival-time for the
precursor pulse (T data) and trigger-pulse-to-arrival-time for the main pulse
(T2 data).

Analysis of these data follows. In this analysis and all that follow, functions
were fit to the data using the S-PLUS! statistical software analysis package.

First, from a plot of the T1 data for the gauges on top of the M113 (top
gauges) vs. distance from the charge point (Figure 4), the precursor pulse
speed can be calculated. Fitting the T1 data with a straight line yields a slope
of 0.20 in/pus which equates to a speed of 5080 m/s, somewhat less than the
published speed? of a longitudinal wave in bulk rolled aluminum (6420 m/s),
but slightly greater than the speed of a longitudinal wave in an aluminum rod
(5000 m/s) which, as in the present case, exhibits boundary effects upon wave
speed. We conclude that the measured speed is consistent with the existence
of afongitudinal wave. :

Similarly, a plot of the T2 data for the top gauges (Figure 5) yields a slope of
0.12 in/ps which equates to a speed of 3035 m/s, in excellent agreement with
the published value of a transverse wave in rolled aluminum (3040 m/s).

We conclude that the observed data traces are caused by the arrival of a
longitudinal disturbance followed by a transverse one.

In the analysis of the T2 data, a phenomenon was noted which gave important
guidance to the amplitude analyses presented in the next section of this report.

A plot of T2 data that includes both the front surface and the top surface
reveals an interesting paradox. As seen in Figure 6, the arrival of the transverse
pulse at points on the top surface actually occurs before the arrival of the pulse
at equal distances on the front surface - even though the pulse arriving at the

tS-PLUS is a software product of Statistical Sciences, Inc., 1700 Westlake Ave. N.,Suite
500, Seattle, WA 98109.

2H andbook of Chemistry and Physics, Forty-Fourth Edition, Chemical Rubber Publishing
Company, Cleveland, OH, 1963.
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Figure 4: Arrival Time of Precursor Pulse - Top Gauges.

60 80 100 120

40

T Y T T r

200 400 600 800 1000
t (usec.)

Figure 5: Arrival Time of Main Pulse - Top Gauges.

10




top points must negotiate the intervening edge. From the intercepts of the
two lines plotted in ‘Figure 6, the time difference is found to be 67 us.

120

- Front Side Data
—— Top Data

d (in)
80 100

60

40

200 400 600 800 1000
t (usec)

Figure 6: Arrival Time of Main Pulse — Front and Top Gauges.

Analysis led to the following explanation. Detonation of the charge results
in the creation of both longitudinal and transverse disturbances on the front
side which propagate outward from the edge of the charge plate, with the
longitudinal disturbance traveling faster as indicated above. Upon reaching
the edge, the longitudinal disturbance generates both a longitudinal and a
transverse disturbance on the top side (as well as reflected disturbances on
the front). It is this transverse disturbance on the top surface, created by the
longitudinal disturbance on the front, that first reaches the top surface gauges.

For this explanation to hold true, the difference between the time of arrival
of the longitudinal disturbance at the top edge and the time for a transverse
disturbance to travel the same distance — approximately 50.8 cm (20 in) — must
account for the time difference noted in Figure 6. Using the speeds measured
from Figures 4 and 5, we find

11




in remarkable agreement with the 67 ys measured in Figure 6.

We conclude that the initial portion (approximately 70 us) of the transverse
vibrations measured on the top surface is generated at the intervening edge by
the arrival of the longitudinal disturbance on the front side. As shown below,
this conclusion dictates the form of the functions used to fit the amplitude
data in Section 4.

3. Amplitude Metrics.

Inspection of the calibrated data traces (Appendix A) reveals a great deal
of chaos in the high-frequency vibration record, as is to be expected in a
shock environment. In order to characterize the amplitude of each trace in a
consistent manner, the following technique was used.

First, visual analysis of the data traces was made. This analysis identified and
removed those traces in which obvious experimental difficulties were experi-
enced. For example, the data trace for Gauge #4 in Shot #713 (Figure 7) is
clearly oversaturated, as — somewhat more subtly — is the same gauge in Shot
#708 (Figure 8). (The behavior of Gauge #4 in general is discussed below.)
The data so removed are listed in Table 3.

"A utility code was written to conduct the data extraction. Operating on
the complete files of calibrated data, this code removed the data listed in
Table 3, extracted the arrival times presented in the preceding section, and
also performed amplitude characterization. This characterization consisted of
identifying peaks in each data trace by comparing the values of adjacent data
points. For each trace, peak amplitudes were then tabulated. In order to
“smooth out” the chaos evident in the traces, the N highest peaks were then
averaged. Clearly, larger values of N tend to give smoother data, but also
dilute the differences between gauge outputs. After trying several values of N,
it was decided to characterize the output of each gauge for each shot by the
average of the four highest peaks in the corresponding data trace. We refer
to these averages as the “top4” metric. Thus, the magnitude of the shock
measured by each gauge for each shot is represented by a single top4 number.

It was recognized that, in order to include data from different shots into a
single analysis, it would be necessary to normalize all data records to remove
shot-to-shot variations. Thus, as a final step in the extraction of top4 data,
all top4 numbers from each shot were normalized. Two normalization schemes
were investigated. In the first scheme, each top4 value for each gauge for a
given shot was normalized to the average of the top4 numbers of all gauges

12



000€ 00se

"€1L#10US ‘p# 98nen jJo ndinQ pajeiqie) :/ omgyy

000¢

SPUODISOIDNA

00S1

0001

00S

I I <_ P__;.____

_‘

| _%

0000¢-

0000}~

0000}

00002

13




"80L# 10YS ‘p# 23nen jo mdinQ pajeiqie) :g om3ig

SpU029g

0k00 0 0200 0 0200 0 01000

00000

-

- 00000}

00

- 0700001

(sD) uoIeIs[EIIY

14



Table 3: Data Removed from Analysis.

Shot # Gauge #
695
698
698
708
708
708
709
709
709
712
712
713
713
714
714
719
719
719
719

p—t — —
Moo b0 D s 00 s 00 I O T T
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for that shot. The second scheme used the output of only the distant front-
face gauges (gauges #1 and #2) as the normalization constant for each shot.
Since the second scheme was found to introduce less scatter into the data
than the first, the analyses reported below were done using data normalized
by use of the second scheme. Note that normalization loses any information
on the absolute acceleration of any point, which was not of interest in this
study. Preserved is the relative acceleration of each point with respect to that
of the other points for that shot. This normalization allowed data from the
eight shots listed in Table 2 to be combined into a single analysis even though
experimental vagaries resulted in different initial shock levels for the various
shots.

A utility code then gathered the normalized numbers, associated them with
the corresponding distances from the shock point and numbers of interven-
ing edges, and formed matrices for the analysis presented in the next section.
A plot of the combined normalized data, by distance from the shock point, is
presented in Figure 9. Similar plots, containing the normalized data from each
shot individually, are presented in Appendix B. In these plots, squares repre-
sent data from front face gauges, circles from top face gauges, and triangles
from rear face gauges.

Recall that there were two gauges on the front face at 48 in from the charge,
the average of which was used to normalize all data from a particular shot.
This averaging accounts for the spread in the points at 48 in from the charge.
Had there only been one gauge at 48 in, all points at that abscissa would fall
exactly at a normalized amplitude of 1, of course.

4. Semi-empirical Equation Development.

The approach taken to fitting the M113 ballistic shock data in Figure 9 was
to hypothesize various physical phenomena which could be important in the
propagation of the leading edge of the high-frequency shock wave to the various
gauges over the vehicle. The expected behavior of each of these phenomena
was parameterized and included in a comprehensive function which was then
fit to the data. This resulted in the systematic set of progressively more
complex semi-empirical fits. Goodness of fit was assessed via the residual sum
of squares calculated by the S-PLUS statistical software analysis package.

In this section, we present the final equation used to fit the data in Figure 9.

Modeling of the following physical phenomena effected the best fit:
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e The existence of two wave modes, longitudinal and transverse, denoted
by subscripts 1 and 2, respectively.

e The mixing of modes, as modeled by parameters C;;,:, 7 = 1, 2.
e Mode-dependent exponential decrease in amplitude with distance.

Amplitude enhancements at points close to an edge, with differentiation
between points before an edge (subsequent edge) and points beyond an
edge (preceding edges) (as viewed from the source).

The resulting equation can be succinctly written as follows.

Vi=A;xe® x (1+Dxe?™) x (1 +Fxe ') (1)

A; (new face) = Ci; x Y (edge of preceding face)
where

Y; = Amplitude of the disturbance

; = Subscript indicating longitudinal (1) or transverse (2)
A; = Amplitude at charge point/each succeeding edge

b; = Decrease with distance (exponential parameter)

x = Distance from charge point to measurement point
D = Enhancement due to proximity of subsequent edge
d = Decrease in D with distance from subsequent edge
r = Distance from subsequent edge

F = Enhancement due to proximity of preceding edge
f = Decrease in F with distance from preceding edge

s = Distance from preceding edge

The ability of Equation 1 to fit the Figure 9 data is shown in Figure 10.
The data set consists of 75 points. However, it must be pointed out that the
available data were not sufficient to determine all of the above parameters.
For example, the C;; were found to be irresolvable. Two C;; could be freed
to fit to the data only if the A; were fixed; however, attempts to free both
the A; and C;; or to free more than two C;; led to “singular gradient matrix”
errors in the fitting routine, an indication that the fitting parameters are not
independent with respect to the available data. Similarly, it must be noted
that the value of A, was effectively set by normalizing to a front face point.
Hence, in the actual fitting equation, there were six free (fitting) parameters,

V1Z:

18
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A; - Amplitude at charge point/each succeeding edge
by - Decrease with distance (exponential parameter)
b, — Decrease with distance (exponential parameter)

D - Enhancement due to proximity of subsequent edge
d - Decrease in D with distance from subsequent edge
F - Enhancement due to proximity of preceding edge

5. Goodness of Fit.

Evaluation of the goodness of fit of a non-linear equation is generally prob-
lematic. However, the following technique, adopted from Draper and Smith?
provides a reasonable (practical) measure. Effectively, the technique compares
the intrinsic scatter in the data from their means to the scatter of the data
from the fit at each measurement point.

Note that the technique for estimating intrinsic scatter requires more than one
independent measurement be taken at some or all of the measurement points,
a condition assured from the beginning in this analysis by combining the (nor-
malized) data from the eight shots listed in Table 2. (See Section III.A.3.)

The intrinsic scatter is characterized as follows: The “pure error sum of
squares”, S%, in a data set containing more than one value at each point in the
independent variables, is defined as ~

K _
=X 3 (% - Y (2)

k=1 j=1

where n; are the number of values at each of K measurement points, Y;; are
the data and Y are the means at each measurement point. Since K means
have been computed, the total degrees of freedom in computing S? is given by
N-K, where N is the total number of data. Thus, the “mean square for pure
error” is given by

2 _ ZI{\:<=1 Z] l(YkJ - Yk) (3)
N-K

&
o

3Draper, N. R., and H. Smith. Applied Regression Analysis. New York: John Wiley &
Sons, Inc., 1966
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The scatter of the data from the fit is characterized by
2 il 2
S =3 (Yz - Y2> ) (4>

where V; is the fitted value corresponding to the i** datum. The number of
degrees of freedom in 52 is the number of data, N, minus the number of fitting
parameters, m, in the equation for 32, Thus, the mean square scatter of the
data from the fit is given by

s, = N (5)

For the data in this analysis, we find

Parameter Value Statistic  Value
N 75 S2 3.00035

m 6 sf 0.04616

K 10 52 3.08613

82 0.04473

Note that 82 is less than 2.

Heuristically, one can think of this goodness of fit analysis as follows. In ad-
dition to the underlying physical phenomena which we wish to model, the
data contain indeterminate contributions (“pure error”) from experimental
vagaries, measurement error, and other sources. We assume that the indeter-
minate contributions are randomly distributed about the mean at each mea-
surement point and therefore that the mean at each measurement point is the
best estimate of the true value at that point. The fit (Equation 1) attempts to
produce the true values via a parametric equation. We therefore ask to what

21




degree does the intrinsic scatter of the data about each best estimate compare
to the scatter about the fitted value.

Bodt* notes that the complexities in nonlinear modeling do not support the
same statistical tests that linear modeling supports. However, similar test
constructions as in the linear case are still often used, but with the caveat that
the actual distribution of the test statistic is unknown.

Even with that caveat, Bodt points out that the use of the F-statistic to
compare 32 and s? would be unwarranted. An F random variable is the ratio
of two independent Chi-Square random variables. But, the Chi-Square variate
based on the residual mean square (32) and the Chi-Square variate based on
the pure error mean square (s2) are not independent.

However, the Chi-Square variate based on the residual mean square with the
pure error mean square removed is independent of the Chi-Square variate based
on the pure error mean square. In this spirit, Draper and Smith suggest the
following statistic to gain “an approximate idea of possible lack of fit”:

(5> = 8%)/(K —m)
S2/(N - K)

GoF = = 0.4645 (6)

which they compare to

F(K —m,N — K,0.95) ~ 2.5 >> GoF.

The comparison here is significantly better than the example which, according
to Draper and Smith,® “would make us tentatively feel that the model does
not fit badly”. We thus conclude that Equation 1 accounts very well for the
non-random behavior of the data.

4Bodt, Barry A., Private communication. U.S. Army Research Laboratory, APG, MD,

1997
3Draper, N. R., and H. Smith. Applied Regression Analysis. New York: John Wiley &

Sons, Inc., 1966
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IV. Summary and Discussion

This study has dealt with the propagation of only the leading, high-frequency
edge of the shock wave emanating from an impact point on an armored vehicle.
Since the data show that this leading édge invariably contains the highest
amplitude disturbances in the frequency range of interest, concentration on
this phenomenon is warranted. Specifically, this study has analyzed the data
taken in an experiment in which the vehicle was an M113 armored personnel
carrier and the mechanism of shock production was an explosive charge placed
on a striker plate which was in contact with the hull of the M113.

This study has shown that the amplitude of the transverse wave can be well
fit by a semi-empirical equation (Equation 1) which accounts for both a lon-
gitudinal and a transverse wave, exponential decrease with distance, mixing
of waves at edges, and amplification at points near edges. Since this analysis
dealt only with the propagation of the leading edge of longitudinal and trans-
verse disturbances within the hull material itself, the flexural response of the
system as a whole was irrelevant.

Comparison of the leading edge velocities with data published for rolled alu-
minum confirms the analysis of longitudinal and transverse disturbances. No
further attempt was made to relate the results to material properties. At-
tempts to do so will require data taken on structures made of other materials.
Similarly, resolution of certain semi-empirical parameters, such as the mode
mixing ratios, will require additional data from experiments specifically de-
signed for such measurements.

It is seen that Equation 1 constitutes an algorithm that is suitable for incor-
poration into vulnerability analysis codes. Such a code must propagate both
the longitudinal and transverse waves through the hull material from point
of impact to point of interest. At each intervening edge, amplitudes must be
calculated for use as starting values for propagation on the succeeding face.

It is recognized that the above algorithm addresses only one of the three ma-
jor factors in the analysis of the high-frequency portion of ballistic shock.
Significant work is required on shock generation upon impact and upon com-
ponent failure due to high frequency acceleration before a useful ballistic shock
methodology can be assembled.

It is also recognized that newer vehicles, with composite and/or double hulls,

will introduce further complications into this treatment. However, the results
presented herein give a reasonable starting point for future development.
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Appendix A

Calibrated Data
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